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ABSTRACT

There are multiple applications for pseudorandom number generators, notably in simu-
lation and cryptography. A bad pseudorandom number generator can cause misleading
results in simulations or loss of security and attacks against implementations of crypto-
graphic systems with low-entropy sequences. Pseudorandom number generator test suites
provide insight and metrics for security-critical system components. This thesis added
multi-threading to an existing test-suite, known as Dieharder, to significantly speed up
pseudorandom number generator testing on multi-core systems. Evaluations were con-
ducted on the original Dieharder, a threaded version of Dieharder using a POSIX-compliant
thread pool (Dieharder-T), and a threaded version of Dieharder-T using OpenMP with static
and dynamic scheduling. The results show that Dieharder-T with OpenMP, two threads and
static scheduling completes in about half the time of the single-threaded Dieharder-T. The
run-time is not halved again when the number of threads is increased to four, due to ineffi-
cient scheduling of tasks to threads. A hybrid scheduling solution is proposed to improve
the performance of the multi-threaded pseudorandom number generator test suite.
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CHAPTER 1:
Introduction

There have been recent high-profile cases of weakness in pseudorandom number generators
(PRNGs) leading to cryptographic flaws, resulting in security risks. One example is the
compromise of group chats of Cryptocat due to a programming flaw [1]. A bug in the
BigInt library caused the random number generator to have a slight bias when generating
keys, making it possible to crack these keys within a day [2]. Another example is a flaw
with OpenSSL’s entropy pool on Debian, reducing its strength from 256 bits to 15 bits [3].
It resulted in generating only 32,767 possible secure shell (SSH) keys of a given type and
size, allowing brute force to be a practical attack on the key. More recently, improper
initialization of the PRNG led to android digital wallets being hijacked [4].

For military systems where PRNG design and evaluation cannot be conducted openly, test-
ing PRNGs empirically may be the only option available for assessing the properties of
these security-critical components; this is true for the many embedded and proprietary sys-
tems employed in national security applications.

PRNG test suites provide insight and metrics for these security-critical system components.
However, to date there have been no good performance analyses of PRNG test suites. Re-
view of existing statistical test suites showed that they employed a battery of efficiently
implemented tests, utilizing heavy performance optimization, but these tests were run in
serial. PRNGs and existing statistical test suites are reviewed in Chapter 2.

This thesis added multi-threading to Dieharder, a well-known PRNG test suite, to signif-
icantly speed up PRNG testing on multi-core systems. The modifications to Dieharder

and the platform used to conduct the experiments are described in Chapter 3. To im-
plement multi-threading, two different libraries for threading were evaluated. The first
implementation used a Portable Operating System Interface (POSIX) thread pool library
implemented by Mark Gondree [5], and the second implementation used Open Multi-
Processing (OpenMP) [6]. The experiments with these various approaches to improve
performance, and their results, are discussed in Chapter 4.
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The primary contributions of this thesis are as follows:

• We modify Dieharder to support multi-threading, to create a variant test-suite
(Dieharder-T).

• We integrate Gondree’s thread pool library into Dieharder-T and evaluate perfor-
mance of the test suite.

• We integrate OpenMP into Dieharder-T and and evaluate performance of the test
suite with both static and dynamic scheduling.

• We find that thread pool and OpenMP performed better than Dieharder. OpenMP
performed similar or better than thread pool depending on the number of threads
used.

• We conclude that for Dieharder-T, OpenMP with static scheduling offered the best
performance.

• We propose a hybrid scheduling solution for Dieharder-T that utilizes the advantages
of static and dynamic scheduling

1.1 Organization
The thesis is organized as follows. In Chapter 2, we provide the formal definition for PRNG
and discuss a few existing statistical test suites. In Chapter 3, we described the design of
the multi-threaded application and the platform used for the experiments. In Chapter 4, we
discuss the experiments performed and an analysis of the results. In Chapter 5 we conclude
and summarize future work.

2



CHAPTER 2:
Background

In this chapter, we review pseudorandom number generators (PRNGs) and provide a formal
definition. We discuss a few existing statistical test suites before going into more details on
two of interest to this study: Diehard and Dieharder.

2.1 Pseudorandom Number Generator
A PRNG is an implementation of an algorithm that generates a deterministic sequence of
numbers that appears to be random. As these numbers are generated using an initial seed
for the algorithm, the sequence is reproducible with the seed. This makes the sequence
of numbers deterministic as long as the initial seed and algorithm used are known. If the
sequence of numbers produced is interpreted as a sequence of bits, the PRNG may be
called a deterministic random bit generator (DRBG). For the output of a generator to be
deemed as pseudorandom, it “should be indistinguishable from a truly random sequence to
an attacker” [7].

There are multiple applications for PRNGs, notably in simulation and cryptography. Bad
PRNGs can cause misleading results in simulations [8]. The are many applications of
PRNGs in cryptography, such as generating keys, initialization vectors and nonces. Low-
entropy sequences in these applications often result in loss of security and attacks against
implementations of cryptographic systems.

For a random sequence of numbers to be usable for cryptography, the sequence must be
deemed uniformly distributed from the perspective of a computationally-bound adversary.
Weakness in a PRNG can lead to cryptographic flaws, resulting in security risks. One
example is the compromise of group chats of Cryptocat due to a programming flaw [1]. It
was caused by a bug in the BigInt library which caused the random number generator to
have a slight bias when generating keys, making it possible to crack these keys within a
day [2]. Another example is a flaw with OpenSSL’s entropy pool on Debian, reducing its
strength from 256 bits to 15 bits [3]. It resulted in generating only 32,767 possible SSH
keys of a given type and size, allowing brute force to be a practical attack on the key. More
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recently, improper initialization of a PRNG led to android digital wallets being hijacked [4].

Adopting the definition of Desai, Hevia and Yin [7], we define a PRNG GE as a tuple of
algorithms, GE = (K ,G). The seed generating algorithm K takes a security parameter k

as input, to generate a key K and an initial state s0. The generation algorithm G generates
the next state si for i ≥ 1 and an output yi, using key K , the current state si−1 and an
auxiliary input ti. The block length of the PRNG is the length of the PRNG output in each
iteration, i.e., n = | yi | where yi is a sequence of bits yi[0], yi[1], . . . , yi[n − 1].

A generator is considered practical if this sequence of bits is easy to generate. A generator
is considered secure (or unpredictable) if this sequence of bits appears indistinguishable
from random to any computationally-bound adversary. This notion can be formally de-
scribed in several ways, but two common notions are the next-bit-test and Yao’s statistical

test [9]. In the former notion, no polynomial-time Turing machine has significant success
in observing the first i bits of a sequence and accurately predicting bit i + 1 in the sequence.
In the latter notion, no statistical test represented by polynomial-sized circuit has signif-
icant success in differentiating the first i bits of the generated sequence from a i-bit long
random sequence. Yao’s theorem shows that these two notions are, in fact, related: a collec-
tion of i-bit sequences “passes the next-bit-test if and only if it passes all polynomial-sized
statistical tests” [10].

It is often much easier to show at the design-level that a generator is provably secure in
the next-bit-test sense. The notion that a generator is secure if no statistical test appears
to exist differentiating it from random, however, is both intuitive and natural. As a result,
statistical test suites have been developed which may be used to validate both design and
implementation. Statistical test suites, however, provide a much weaker guarantee than the
notion introduced by Yao, which covers all practical statistical tests (including those yet to
have been imagined).

2.2 Statistical Test Suites
Many statistical tests have been proposed by different authors for testing PRNGs, and
these have been collected into statistical test suites. For example, the National Institute
for Standards and Technology (NIST) statistical test suite (STS) is a statistical test suite
released in 2001, designed for testing cryptographically secure pseudorandom number gen-
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erators (CSPRNGs). It consists of 16 simple statistical tests of non-randomness in binary
sequences, intended as a baseline and reference implementation for statistical testing [11].
In 2007, L’Ecuyer and Simard released TestU01 for statistical testing of PRNGs [12], pro-
viding some tests not previously implemented in other test suites. Next, we discuss two
suites in more detail, as they are most relevant to this thesis: Diehard and Dieharder.

2.2.1 Diehard Test Suite
One of the most popular statistical test suites is Marsaglia’s Diehard battery of tests, re-
leased in 1996. The suite includes 15 tests, written in C, translated from Fortran via the
f2c utility. Detailed test descriptions are released with the test suite and not reproduced
here [13], but the list of tests is reproduced in Table 2.1.

The tests require an input binary file of 32-bit integers to represent the sequence of random
numbers [14]. For input files shorter than the required length for each test, the test will run
until the end of the file, output an “END OF FILE” message and skip to the next test. All
tests, except the Runs Test, require various parameters such as sample size, bit patterns, etc.
These parameters have been preset to allow users to employ the test suite with ease and are
not configurable by the user. If a user wishes to customize these parameters, they would
have to modify the source code and recompile the test suite.

2.2.2 Dieharder Test Suite
Brown developed the Dieharder test suite as a GNU-licensed reimplementation of the
Diehard test suite [15]. Dieharder tests are rewritten C code based on test descriptions
from Dieharder and NIST STS. It also includes additional tests developed by Robert G.
Brown and David Bauer. The test suite was named Dieharder both as a movie sequel pun
as well as a tribute to George Marsaglia, author of the Diehard test suite.

Diehard and Dieharder are significantly different. The former uses only binary file for
input to testing, requiring in the range of ten million random numbers [14]; the latter, how-
ever, prefers test generators written using the GNU scientific library (GSL) interface as to
receive an unbounded stream of random numbers. Currently, 80 well-known generators are
supported, many of which are drawn directly from the GSL. Support for reading raw input
through a file is wrapped in a GSL-interface, also. The rationale for using this generator-
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like, streaming API is to support larger sequence of random numbers. Modern applications
may require much more than 1018 random numbers generated from millions of seeds; these
may be sensitive to random number generator (RNG) weaknesses that might not be discov-
ered by sequences limited to 107 random numbers. As of writing, the current version of
Dieharder (3.31.1) has 31 fully implemented tests [16] (see Table 2.1), including tests from
Diehard, NIST STS, tests designed by Brown and Bauer, as well as popular tests from other
sources.

2.3 Test Suite Design
There are many parameters used in Dieharder that would reasonably be used in other tests
suites as well. These parameters are used to control how many random values are tested
in each individual test (psamples, tsamples, multiple_p), controlling the generators (seed,
strategy) and control test (Xtrategy, Xoff, entity count, ksflag). Some of the parameters [17]
used in Dieharder are explained here to understand how they affect the test results.

• psamples: Number of p-value samples per test.
• tsamples: Number of trials used in each test.
• multiply_p: Multiply the number of psamples for each test by a constant amount.
• seed: Initial seed value for PRNG.
• strategy: Reseeding strategy. The default (0) only reseeds at the start of program;

non zero reseeds at start of each test.
• xtrategy: Strategy for when to stop test. The default (0), runs tests with a specified

number of psamples and tsamples; resolve ambiguity mode reruns the test until am-
biguity is resolved by adding psamples; test to destruction mode reruns the test until
failure or reached max psamples.

• xoff: Max number of psamples to determine test is ‘good’.
• ksflag : Which Kolmogorov-Smirnov test type to run. The default (0) is “fast but

slightly sloppy” for psamples > 4999. A much slower but more accurate mode (1) is
available for larger number of psamples, or (2) a very slow mode that is accurate to
machine precision.

• ntuple: Set the ntuple length for tests on short bit strings that permit the length to be
varied.

6



Table 2.1. Comparison of Tests Available in Diehard and Dieharder.

Diehard Dieharder

Birthday Spacings Diehard Birthday Test
Overlapping Permutations Diehard OPERM5 Test
Ranks of 31x31 and 32x32 Matrices Diehard 32x32 Binary Rank Test
Ranks of 6x8 Matrices Diehard 6x8 Binary Rank Test
Monkey Tests on 20-bit Words Diehard Bitstream Test

Monkey Tests OPSO, OQSO, DNA
Diehard OPSO Test
Diehard OQSO Test
Diehard DNA Test

Count the 1’s in a Stream of Bytes Diehard Count the 1’s (stream) Test
Count the 1’s in Specific Bytes Diehard Count the 1’s (byte) Test
Parking Lot Test Diehard Parking Lot Test
Minimum Distance Test Diehard Minimum Distance (2d Circle) Test
3D Spheres Test Diehard 3d Sphere (Minimum Distance) Test
The Squeeze Test Diehard Squeeze Test
Overlapping Sums Test Diehard Sums Test
Runs Test Diehard Runs Test
Craps Test Diehard Craps Test

- Marsaglia and Tsang GCD Test
- STS Monobit Test
- STS Runs Test
- STS Serial Test (Generalized)
- RGB Bit Distribution Test
- RGB Generalized Minimum Distance Test
- RGB Permutations Test
- RGB Lagged Sum Test
- RGB Kolmogorov-Smirnov Test
- DAB Byte Distribution
- DAB DCT
- DAB Fill Tree Test
- DAB Fill Tree 2 Test
- DAB Monobit 2 Test

7
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CHAPTER 3:
Methodology

This chapter will discuss in detail on the methodology used for this thesis. The design of
the multi-threaded application and platform used for the experiments is described.

3.1 Program Design
Dieharder version 3.31.1 was used as the code base to implement a modified multi-threaded
Dieharder test suite named Dieharder-T. The main code modifications were the way indi-
vidual statistical tests were scheduled to run, and modification to individual test logic to
support parallel processing.

Each statistical test from Dieharder is contained within a single file that implements the
base class Test.c. It contains the statistical test logic, input parameters as well as the test
results (outputs). Dieharder-T separated the test logic and input parameters to ITest.c, and
the outputs of the test to OTest.c.

Dieharder includes an “all-tests” mode to allow a convenient way to benchmark the PRNG
being tested. This benchmark mode is more than just running all 31 tests in the test suite.
It includes running various statistical tests by Brown with varying ntuple values to compre-
hensively stress test the generator. The list of tests and corresponding ntuple values used in
this mode is shown in Table 3.1. A total of 80 statistical tests were ran when not running
in resolve ambiguity (RA) or test to destruction (TTD) Xtrategy modes, which might in-
crease the number of statistical tests to run depending on test results as explained in Section
2.3. To enable a fair comparison between Dieharder and Dieharder-T, Dieharder-T will
execute the exact same 80 statistical tests when running in this benchmark mode.

To implement multi-threading in Dieharder-T, two different libraries for threading were
evaluated. The first implementation used a POSIX thread pool library implemented by
Mark Gondree [5], and the second implementation used OpenMP [6]. As the tests do not
depend on results of other tests, they can be executed in parallel without altering the test
results. In order to validate test results against Dieharder, the random numbers provided to
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both Dieharder and Dieharder-T have to be the same to generate the same p-value. Since
the sequence of tests executed in Dieharder-T would be different from Dieharder due to
parallelization, the PRNG would be required to be reseeded at the beginning of each test to
ensure that the same tsamples are provided to both Dieharder and Dieharder-T.

3.1.1 Dieharder-T
Using the thread pool library by Gondree, a job will be created for each statistical test to
be executed and added to a common thread pool queue. Whenever a thread in the thread
pool is available, the next job in the queue will be assigned to it. When all jobs in the queue
have been completed, the experiment will terminate successfully. The experiment that uses
the thread pool library will be referred to as Dieharder-T in the following chapters.

3.1.2 Dieharder-T-OMP
OpenMP provides compiler directives, library routines and environment variables to
achieve parallelism in the program. The statistical tests will be executed in a parallel

for loop directive, allowing OpenMP to schedule the tests to different threads. By default,
OpenMP uses a static schedule that assigns loop iterations to threads for execution. In a
4-thread application with 80 loops, static scheduling will assign loops 0 to 19 to thread
ID 0, loops 20 to 39 to thread ID 1, loops 40 to 59 to thread ID 2 and lastly loops 60 to
79 to thread ID 3. This scheduling policy favors tasks that have similar execution time,
which might not be suitable for the test suite due to varying execution times for different
statistical tests, which will be referred to as Dieharder-T-OMP-S. Another type of schedul-
ing available in OpenMP is Dynamic scheduling. This scheduling mode will assign a loop
iteration to an available thread, similar to how the thread pool library works. It allows a
more balanced execution time across threads, but incur a higher processing overhead as it
requires the thread to wait after each task to receive the next iteration to execute. The trade-
off between higher overhead and balanced work load will be analyzed in the next chapter.
Dynamic scheduling will be referred to as Dieharder-T-OMP-D in the following chapters.

3.2 Experiment Platform
The experiments were conducted on Amazon Web Services (AWS) Elastic Compute Cloud
(EC2) [18] to provide a reproducible platform for anyone that is interested to validate the

10



experiment results. The deployment platform was a c3.xlarge [19] compute optimized
instance with 4 virtual CPU cores. The instance used was not a dedicated instance and the
physical hardware was shared among different users. As a result of hardware sharing, there
were some high variance in experiment execution time between repetitions of the same
statistical test. The affected experiments were repeated to verify experiment execution
time.

The experiments were set up using a shell script to vary the parameters used, and repeat
individual tests. The Linux time utility [20] was used to measure the time elapsed for each
test, and the real (wall clock) time was used to measure execution time. This provided a
fair comparison between a multi-threaded application and single thread application as it
measured the absolute time taken to execute each experiment.

To generate the input file for testing of the binary file generator for Dieharder, we used the
/dev/urandom on the AWS EC2 to generate a 1 terabytes (TB) binary file on an Elastic Block
Store (EBS) sc1 2 TB volume [21] to be attached to our EC2 instance. /dev/urandom was
used instead of /dev/random due to the blocking nature of /dev/random when the entropy
pool is empty [22]. /dev/urandom was used in the experiments as it was the recommended
PRNG between the two PRNG except when used for long-lived keys [22], [23].

3.3 Reproducibility
In order to verify that the multi-threaded statistical test suite results were accurate, its re-
sults must be validated using Dieharder test results. To have Dieharder and Dieharder-T

executing the exact tests, the initial seed used for PRNG must be explicitly declared so that
they are not randomly generated.

As random numbers are assigned in a block at the start of the test, the order of the tests
execution will affect the block of random numbers assigned in normal operation of the
PRNG. Test options such as RA or TTD Xtrategy modes mentioned in Section 2.3 will
also increase the number of random numbers needed for individual tests that cannot be
determined until the test is completed. Due to the nature of multi-threaded application
executing statistical tests in parallel, the order of assigning the block of random numbers
will be different from that of Dieharder, which executes the statistical tests sequentially.
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To have a fair comparison of execution time and to verify that Dieharder-T was imple-
mented correctly, the experiments performed in this thesis were initialized with the same
initial seed that were reseeded at the start of each statistical test.
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Table 3.1. List of Tests and ntuple Values for “All-Tests” (Benchmark) Mode

Test ntuple values

Diehard Birthday Test 0
Diehard OPERM5 Test 0
Diehard 32x32 Binary Rank Test 0
Diehard 6x8 Binary Rank Test 0
Diehard Bitstream Test 0
Diehard OPSO Test 0
Diehard OQSO Test 0
Diehard DNA Test 0
Diehard Count the 1’s (stream) Test 0
Diehard Count the 1’s Test (byte) 0
Diehard Parking Lot Test 0
Diehard Minimum Distance (2d Circle) Test 0
Diehard 3d Sphere (Minimum Distance) Test 0
Diehard Squeeze Test 0
Diehard Sums Test 0
Diehard Runs Test 0
Diehard Craps Test 0
Marsaglia and Tsang GCD Test 0
STS Monobit Test 0
STS Runs Test 0
STS Serial Test (Generalized) 0
RGB Bit Distribution Test 1 - 12
RGB Generalized Minimum Distance Test 2 - 5
RGB Permutations Test 2 - 5
RGB Lagged Sum Test 0 - 32
RGB Kolmogorov-Smirnov Test 0
Byte Distribution 0
DAB DCT 0
DAB Fill Tree Test 0
DAB Fill Tree 2 Test 0
DAB Monobit 2 Test 0
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CHAPTER 4:
Experiments and Analysis

This chapter will discuss the experiments performed in this thesis and an analysis of the
results. The first three experiments were conducted to narrow down the parameters to be
used for the other experiments. The next two experiments were conducted to compare the
performance of Dieharder and Dieharder-T. The last two experiments were conducted to
evaluate the effects of OpenMP scheduling policy. The full results can be found in the
Appendix.

4.1 PRNG Source
This experiment was designed to compare the two different methods for passing random
numbers to Dieharder. The experiment measured the execution time for running the “all-
tests” benchmark mode using file-based random number input and unbounded random
number stream. The two different PRNGs selected for the experiment were Mersenne
Twister and raw file input as described in Section 3.2. To determine if the run-time taken for
“all-tests” benchmark mode increases linearly when number of psamples were increased,
the number of psamples were varied by changing the multiply_p value. The experiment
also helped to select the PRNG for the other experiments. The parameters used for this
experiment are listed in Table 4.1.

Table 4.1. List of Parameters for PRNG Comparison

Parameter Value

Test Suites Dieharder
Xtrategy Mode Normal (0)
KS Test Default (0)
Tests All-tests (a)
Generators Mersenne Twister (13), Raw File Input (201)
Multiply P 1, 2, 4, 8

The run-time for Mersenne Twister and raw file input generators are shown in Figure 4.1
and the full results are shown in Appendix A.1. The results show a consistent rate of in-
crease for the run-time when multiple_p is increased: the run-time doubled when psamples
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was doubled for the Mersenne Twister. The total run-time of raw file input generator was
much higher compared to the Mersenne Twister generator. The Mersenne Twister gener-
ator was selected as the generator to be used for the rest of the experiments as it would
reduce total run-time by a factor of 7.

Figure 4.1. Dieharder Run-time for Different GSL Generators

4.2 Test to Destruction Xtrategy Mode
This purpose of this experiment was to estimate the time taken to execute TTD Xtrategy
mode when multiply_p was increased. This experiment was the only experiment in this
thesis that did not use the “all-tests” benchmark mode, as testing under TTD mode ap-
proached more than a week to complete with “all-tests”. This experiment ran “Diehard

bitstream test” with the parameters shown in Table 4.2. As RA and TTD modes required
the Kolmogorov-Smirnov test (KSTEST) flag to use the accurate mode (2) [17], all three
Xtrategy modes were executed in KSTEST accurate mode for consistency.
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Table 4.2. List of Parameters for Test To Destruction Run-time Estimation

Parameter Value

Test Suites Dieharder
Xtrategy Mode Default (0), Resolve Ambiguity (1), Test to Destruction (2)
KS Test Accurate (2)
Tests Diehard Bitstream Test (4)
Generators Mersenne Twister (13)
Multiply P 1, 2, 4, 8

From the results as shown in Figure 4.2, it can be concluded that the run-time for TTD was
nearly constant, even when multiply_p was increased. This is not surprising as individual
statistical tests were repeated with psamples in increments of 100 until the PRNG failed
the test or reached the maximum psamples as defined by the xoff parameter. As the run-
time for individual statistical tests increased with increasing psample values, the run-time
for smaller psample values only contributed a small percentage of total run-time for the
experiment. Statistical tests with multiply_p value of 2 (starting psample of 200) performed
only one less repetition (at default, psample value of 100, xoff value of 100,000, increment
of 100) resulting in insignificant reduction in total run-time as multipy_p was increased.

The results also showed that the run-time for default and RA Xtrategy modes was much
shorter compared to that for TTD mode. As shown in Appendix A.2, the run-time for
TTD was more than 300 times longer when compared to default mode when multiply_p
was 8. Using the results from the previous experiment, the estimated run-time for TTD in
“all-tests” benchmark mode is at least 100 days. Since the time taken to run TTD would
be excessive, no further experiments were executed in this Xtrategy mode. The other two
modes were then evaluated using the “all-tests” benchmark mode in the next experiment as
they showed similar execution time for just one statistical test.
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Figure 4.2. Dieharder Different Xtrategy Mode Run-time for Bitstream Test.

Y-Axis in logarithmic time scale.

4.3 Xtrategy Mode Selection
This goal of this experiment was to evaluate the default and RA Xtrategy modes to deter-
mine the Xtrategy mode to be used for the rest of the experiments. The experiment was
executed using the “all-tests” benchmark mode with the parameters listed in Table 4.3.

Table 4.3. List of Parameters for Xtrategy Mode Selection

Parameter Value

Test Suites Dieharder
Xtrategy Mode Default (0), Resolve Ambiguity (1)
KS Test Accurate (2)
Tests All-tests (a)
Generators Mersenne Twister (13)
Multiply P 1, 2, 4, 8

As shown in Figure 4.3, both Xtrategy modes had similar execution time except when
multiple_p had a value of 4. At multiply_p value 4, 32 individual statistical tests were
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repeated in RA mode to resolve ambiguity, resulting in the additional 9 minutes compared
to default mode as shown in Appendix A.3.

As run-time for the default Xtrategy mode was nearly identical but less variable than RA
mode, the default was selected as the Xtrategy mode for the rest of the experiments. The
run-time for RA is expected to follow closely to that of default mode when there are few
ambiguous (weak) results.

Figure 4.3. “All-Tests” Run-time for Default and Resolve Ambiguity Modes

4.4 Dieharder and Dieharder-T Comparison
This purpose of this experiment was to compare the run-time of Dieharder with the follow-
ing variants of Dieharder-T:

• Dieharder-T in serial mode.
• Thread pool Dieharder-T with 1 to 4 thread counts.
• Static scheduling OpenMP Dieharder-T with 1 to 4 thread counts.

The parameters used for this experiment are shown in Table 4.4.
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Table 4.4. List of Parameters for Statistical Test Suites Comparison

Parameter Value

Test Suites Dieharder, Dieharder-T, Dieharder-T-OMP-S
Xtrategy Mode Default (0)
KS Test Default (0)
Tests All-tests (a)
Generators Mersenne Twister (13)
Multiply P 1, 2, 4, 8

As shown in Figure 4.4, Dieharder had the longest run-time followed closely by Dieharder-

T running in serial mode. This showed that the modifications made to Dieharder described
in Section 3.1 improved code efficiency, reducing run-time as multiply_p was increased.

The run-time for 1-thread Dieharder-T and Dieharder-T-OMP-S were almost similar to
serial Dieharder-T as expected.

The run-time for 2-thread Dieharder-T was significantly higher than 2-thread Dieharder-T-

OMP-S, probably due to the dynamic scheduling overhead in thread pool. The run-time for
3-thread and 4-thread Dieharder-T was similar to that for 2-thread and 3-thread Dieharder-

T-OMP-S. As thread pool uses a thread for polling of job statuses, the maximum number
of central processing unit (CPU) cores available for executing statistical tests was limited
to 3 in the experiment platform with 4 virtual CPUs. This resulted in 3-thread and 4-thread
Dieharder-T having similar run-time.

The 4-thread Dieharder-T-OMP-S had the shortest run-time for all statistical test suites
evaluated and was 16% faster than 3-thread Dieharder-T-OMP-S. The 3-thread Dieharder-

T-OMP-S was only about 2% faster than 2-thread Dieharder-T-OMP-S and is examined
in greater details in Section 4.5. The 2-thread Dieharder-T-OMP-S took almost half the
time of 1-thread Dieharder-T-OMP-S as expected since the tasks were split between two
threads.

The results showed that Dieharder-T-OMP-S performed the same or better than Dieharder-

T depending on the number of threads used, making it the preferred choice for implement-
ing multi-threading for the PRNG test suite.
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Figure 4.4. “All-Tests” Run-time for Different Statistical Test Suites
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4.5 Static Scheduling Individual Test Run-time
The goal of this experiment was to collect the run-time for individual statistical tests in each
thread for 2-thread and 3-thread Dieharder-T-OMP-S. It was to determine if the similarity
in run-time despite having a difference of one thread was due to inefficient allocation of
statistical tests to threads. The parameters used to run this experiment can be found in
Table 4.5

Table 4.5. List of Parameters for Static Scheduling Run-time Collection

Parameter Value

Test Suites Dieharder-T-OMP-S
Number of Threads 2, 3
Xtrategy Mode Default (0)
KS Test Default (0)
Tests All-tests (a)
Generators Mersenne Twister (13)
Multiply P 1

The run-time for individual statistical tests in 2-thread and 3-thread Dieharder-T-OMP-

S are shown in Figure 4.5. The colors are used to denote the order of statistical tests
within a thread. The same color does not represent the same test in 2-thread and 3-thread
Dieharder-T-OMP-S. Figure 4.5a shows that the run-time between both threads are almost
equal and Figure 4.5b shows that the run-time between all 3 threads varied greatly. Since
the run-time of the test suite is determined by the thread with the longest run-time, the
unequal distribution of run-time load among the threads led to only 2% reduction in total
run-time despite adding an additional thread. The experiment described in Section 4.6 was
conducted to determine if changing OpenMP scheduling policy would improve the overall
performance regardless of thread counts.
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(a) 2-Thread Static Scheduling

(b) 3-Thread Static Scheduling

Figure 4.5. Individual Statistical Tests Run-time for Individual Thread

The colors are used to denote order of statistical tests run within a thread. They
do not represent the same tests within (a) and (b).
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4.6 OpenMP Scheduling Policy
In this experiment, different OpenMP scheduling policies explained in Section 3.1.2 were
evaluated to determine their impact on statistical test suite run-time. Static and dynamic
scheduling policies were executed using the parameters shown in Table 4.6.

Table 4.6. List of Parameters for Scheduling Policy Comparison

Parameter Value

Test Suites Dieharder-T-OMP-S, Dieharder-T-OMP-D
Xtrategy Mode Default (0)
KS Test Default (0)
Tests All-tests (a)
Generators Mersenne Twister (13)
Multiply P 1, 2, 4, 8

The run-time for both scheduling policies are shown in Figure 4.6. The results show that
1-thread Dieharder-OMP-S and 1-thread Dieharder-OMP-D had similar run-time. This
was expected as all tasks could only be allocated to 1 thread, there should be no difference
between static and dynamic scheduling.

2-thread Dieharder-OMP-S had shorter run-time compared to 2-thread Dieharder-OMP-

D. This could be attributed to dynamic scheduling having a higher overhead and 2-thread
static scheduling being more efficient in this instance as shown in Figure 4.5a.

When the thread count was increased to 3, Dieharder-OMP-D performed slightly better
than Dieharder-OMP-S. As seen from Figure 4.5b, 3-thread static scheduling was ineffi-
cient when allocating tasks to threads. The overhead incurred in dynamic scheduling was
less costly compared to the inefficient allocation of tasks.

When the thread count was increased to 4, Dieharder-OMP-D did not increase in perfor-
mance compared to Dieharder-OMP-S, with both achieving similar run-time. The exper-
iment described in Section 4.5 was conducted to determine why both scheduling polices
had similar performance.
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Figure 4.6. OMP Dynamic Scheduling Run-time
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4.7 4-thread Scheduling Individual Run-time
This experiment was performed to collect the run-time for individual statistical tests in each
thread for 4-thread static and dynamic scheduling. This was to identify why the run-time
for 4-thread static and dynamic scheduling were similar as described in Section 4.6. The
parameters used to run this experiment are shown in Table 4.7.

Table 4.7. List of Parameters for 4-thread Individual Run-time Collection

Parameter Value

Test Suites Dieharder-T-OMP-S, Dieharder-T-OMP-DS
Number of Threads 4
Xtrategy Mode Default (0)
KS Test Default (0)
Tests All-tests (a)
Generators Mersenne Twister (13)
Multiply P 1, 2, 4, 8

As shown in Figure 4.7, dynamic scheduling allocated statistical tests to threads very effi-
ciently. Dynamic scheduling is good when tasks did not have consistent run-time, similar
to individual statistical tests having different experimental run-times. The disadvantage of
dynamic scheduling is that it incurred higher overhead as it had to pause the thread every
time it had to allocate a new task. The purpose of this experiment was determining if the
extra overhead incurred was less than the time saved from efficient allocation of tasks.

The run-times for static scheduling are shown in Figure 4.7b. Although the same number
of tasks were assigned to each thread, the time taken to complete all tasks varied widely
among all four threads. The faster threads were idle for 43%, 30% and 13% for the duration
of the experiment, showing clear inefficiency in task allocation.

Using both results, it can be concluded that dynamic scheduling was able to allocate tasks
efficiently among the thread, and static scheduling was able to allocate tasks to threads with
little overhead. It was concluded that the most efficient way to implement multi-threading
would be to apply static scheduling to tasks that are arranged such that tasks add up to
similar run-time. This approach would require each statistical test to be benchmarked and
assigned a value indicating time required. This would allow the program to calculate the
estimated run-time for each thread and arrange the tasks such that each thread would get
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tasks adding up to the estimated run-time.

(a) Dynamic Scheduling

(b) Static Scheduling

Figure 4.7. Run-time for Different Dieharder-T OpenMP Scheduling Types

The colors are used to denote order of statistical tests run within a thread. They
do not represent the same tests within (a) and (b).
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CHAPTER 5:
Conclusion

The primary contributions of this thesis are as follows:

• We modified Dieharder to support multi-threading, creating a variant test-suite
(Dieharder-T).

• We integrated Gondree’s thread pool library into Dieharder-T and evaluated perfor-
mance of the test suite.

• We integrated OpenMP into Dieharder-T and evaluate performance of the test suite
with both static and dynamic scheduling.

Our experimental results show that multi-threading reduced the run-time of Dieharder.
Due to inefficient scheduling in Dieharder, multi-threading showed a decrease in run-time
when the number of threads were increased. OpenMP with static scheduling showed the
most consistent reduction of run-time when compared to Dieharder.

The run-time for static scheduling was halved when the number of threads were increased
to two. This was achieved as the run-time between both threads were similar, resulting in
halving of total run-time. The run-time was not halved further when the numbers of threads
were increased to four as there was great disparity among thread run-time.

The results showed that dynamic scheduling did not provide better performance to static
scheduling due to the overheads incurred when allocating tasks to threads. 2-thread dy-
namic scheduling did not halve the run-time of 1-thread dynamic scheduling due to the
overhead incurred. The overhead appeared consistent even as number of threads increased,
resulting in declining performance when number of threads were increased. This made
dynamic scheduling unsuitable to be used for multi-threading in our PRNG test suite.

Based on the conclusions described in Section 4.7, efficient allocation of tasks can be
achieved by combining the advantage from both types of scheduling policies. This would
allow the reduction in run-time to be more consistent when the number of threads are in-
creased. By rearranging the tasks such that tasks in each thread add up to similar run-times,
the threads would not idle for long. This approach could use the data from Appendix A.6,
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assigning an estimated run-time to each statistical test. An additional sorting stage would
be required to be added before tasks are allocated to threads with static scheduling. The
recommended change would require an estimation of run-time to be assigned to each sta-
tistical test and a sorting stage to arrange the statistical tests for assignment to each thread.
This would assign tasks to threads using static scheduling and achieving low variance of
run-time between threads similar to dynamic scheduling.
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APPENDIX: Experiments Result

This appendix contains the raw experimental data that was collected during the experiments
described in Chapter 4. The “change factor” shown in the tables below is the change in run-
time when the number of psample values are doubled.

A.1 Dieharder Generators Run-time
This section contains the raw experimental data that was collected for Dieharder genera-
tors.

Table A.1. Run-time for Mersenne Twister Generator

Multiply_P Run 1 (S) Run 2 (S) Run 3 (S) Average (Hours) Change Factor

1 946 941 947 0.26 -
2 1887 1887 1887 0.52 2.00
4 3775 3778 3776 1.05 2.00
8 7549 7544 7540 2.10 2.00

Table A.2. Run-time for Raw File Input Generator

Multiply_P Run 1 (S) Run 2 (S) Run 3 (S) Average (Hours) Change Factor

1 2590 3789 3647 0.93 -
2 6815 13607 13343 3.13 3.37
4 15340 32972 32822 7.51 2.40
8 33456 71390 71525 16.33 2.17
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A.2 Bitstream Test Run-time
This section contains the raw experimental data that was collected for Bitstream test.

Table A.3. Bitstream Test Run-time for Xtrategy Modes

Multiply_P Run 1 (S) Run 2 (S) Run 3 (S) Average (S) Change Factor

Default

1 1.28 1.25 1.25 1.26 -
2 2.48 2.48 2.48 2.48 1.97
4 4.96 4.95 4.95 4.95 2.00
8 9.91 9.91 9.90 9.91 2.00

Resolve Ambiguity

1 1.24 1.25 1.25 1.25 -
2 2.49 2.49 2.48 2.49 2.00
4 4.96 4.96 4.87 4.93 1.98
8 9.76 9.90 9.82 9.82 1.99

Test to Destruction

1 3247 3139 3271 3235 -
2 3258 3287 3302 3282 1.01
4 3268 3267 3276 3277 1.00
8 3259 3274 3278 3273 1.00
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A.3 Xtrategy Modes Run-time
This section contains the raw experimental data that was collected for different Xtrategy
modes.

Table A.4. “All-Tests” Run-time for Xtrategy Modes

Multiply_P Run 1 (S) Run 2 (S) Run 3 (S) Average (Hours) Change Factor

Default

1 1106 1110 1106 0.31 -
2 2216 2206 2207 0.61 2.00
4 4390 4383 4417 1.22 1.99
8 8792 8752 8864 2.45 2.00

Resolve Ambiguity

1 1143 1143 1150 0.32 -
2 2209 2214 2209 0.61 1.93
4 4933 4959 4923 1.37 2.23
8 8990 8958 8956 2.49 1.82
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A.4 Statistical Test Suites Run-time
This section contains the raw experimental data that was collected for different statistical
test suites.

Table A.5. Statistical Test Suite Run-time - Non-threaded

Multiply_P Run 1 (S) Run 2 (S) Run 3 (S) Average (Hours) Change Factor

Dieharder

1 1106 1110 1106 0.31 -
2 2216 2206 2207 0.61 2.00
4 4390 4383 4417 1.22 1.99
8 8792 8752 8864 2.45 2.00

Dieharder-T Serial

1 923 1307 1313 0.33 -
2 2488 2108 1928 0.60 1.84
4 3828 4404 4055 1.14 1.88
8 7449 8557 7964 2.22 1.95
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Table A.6. Statistical Test Suite Run-time - Dieharder-T

Multiply_P Run 1 (S) Run 2 (S) Run 3 (S) Average (Hours) Change Factor

Dieharder-T 1-Thread

1 975 973 973 0.27 -
2 1919 1922 1927 0.53 1.97
4 3847 3829 3849 1.07 2.00
8 7672 8714 7677 2.23 2.08

Dieharder-T 2-Thread

1 618 617 627 0.17 -
2 1348 1252 1236 0.36 2.06
4 2485 2466 2570 0.70 1.96
8 5031 4731 5038 1.37 1.97

Dieharder-T 3-Thread

1 476 472 474 0.13 -
2 954 952 951 0.26 2.01
4 1882 1881 2006 0.53 2.02
8 3950 4058 3807 1.09 2.05

Dieharder-T 4-Thread

1 463 476 466 0.13 -
2 945 950 939 0.26 2.02
4 1903 1893 1894 0.53 2.01
8 3727 3812 3743 1.04 1.99
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Table A.7. Statistical Test Suite Run-time - Dieharder-T-OMP-S

Multiply_P Run 1 (S) Run 2 (S) Run 3 (S) Average (Hours) Change Factor

Dieharder-T-OMP-S 1-Thread

1 955 956 954 0.27 -
2 1884 1888 1881 0.52 1.97
4 3774 3777 3773 1.05 2.00
8 7572 7534 7541 2.10 2.00

Dieharder-T-OMP-S 2-Thread

1 494 492 492 0.14 -
2 970 966 965 0.27 1.96
4 1934 1935 1931 0.54 2.00
8 3857 3860 3859 1.07 2.00

Dieharder-T-OMP-S 3-Thread

1 500 493 462 0.13 -
2 962 957 924 0.26 1.95
4 1811 1984 1809 0.52 1.97
8 3655 3991 3710 1.05 2.03

Dieharder-T-OMP-S 4-Thread

1 392 401 394 0.11 -
2 791 792 791 0.22 2.00
4 1567 1570 1617 0.44 2.00
8 3207 3145 3201 0.88 2.01
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Table A.8. Statistical Test Suite Run-time - Dieharder-T-OMP-D

Multiply_P Run 1 (S) Run 2 (S) Run 3 (S) Average (Hours) Change Factor

Dieharder-T-OMP-D 1-Thread

1 964 958 952 0.27 -
2 1881 1882 1909 0.53 1.97
4 3801 3790 3790 1.05 2.01
8 7543 7557 7562 2.10 2.00

Dieharder-T-OMP-D 2-Thread

1 565 557 552 0.16 -
2 1102 1163 1150 0.32 2.04
4 2259 2301 2300 0.64 2.01
8 4384 4434 4591 1.24 1.95

Dieharder-T-OMP-D 3-Thread

1 438 453 455 0.12 -
2 855 885 863 0.24 1.93
4 1709 1754 1832 0.49 2.03
8 3428 3618 3734 1.00 2.04

Dieharder-T-OMP-D 4-Thread

1 395 397 394 0.11 -
2 788 792 790 0.22 2.00
4 1630 1479 1598 0.44 1.99
8 3190 3294 3282 0.90 2.07

A.5 Static Scheduling Run-time Per Thread
This section contains the raw experimental data that was collected for 2-thread and 3-thread
static scheduling.
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Table A.9. 2-Thread Static Scheduling Tests Run-time - Thread 0
Thread ID Statistical Test ntuple Run-time (Seconds)

0 Diehard Birthday Test 0 1
0 Diehard OPERM5 Test 0 4
0 Diehard 32x32 Binary Rank Test 0 14
0 Diehard 6x8 Binary Rank Test 0 2
0 Diehard Bitstream Test 0 1
0 Diehard OPSO Test 0 3
0 Diehard OQSO Test 0 2
0 Diehard DNA Test 0 29
0 Diehard Count the 1’s (stream) Test 0 1
0 Diehard Count the 1’s (byte) Test 0 2
0 Diehard Parking Lot Test 0 2
0 Diehard Minimum Distance (2d Circle) Test 2 1
0 Diehard 3d Sphere (Minimum Distance) Test 3 4
0 Diehard Squeeze Test 0 2
0 Diehard Sums Test 0 1
0 Diehard Runs Test 0 1
0 Diehard Craps Test 0 4
0 Marsaglia and Tsang GCD Test 0 161
0 STS Monobit Test 1 1
0 STS Runs Test 2 10
0 STS Serial Test 1 11
0 RGB Bit Distribution Test 1 2
0 RGB Bit Distribution Test 2 2
0 RGB Bit Distribution Test 3 2
0 RGB Bit Distribution Test 4 3
0 RGB Bit Distribution Test 5 3
0 RGB Bit Distribution Test 6 5
0 RGB Bit Distribution Test 7 7
0 RGB Bit Distribution Test 8 10
0 RGB Bit Distribution Test 9 14
0 RGB Bit Distribution Test 10 18
0 RGB Bit Distribution Test 11 26
0 RGB Bit Distribution Test 12 46
0 RGB Generalized Minimum Distance Test 2 6
0 RGB Generalized Minimum Distance Test 3 9
0 RGB Generalized Minimum Distance Test 4 24
0 RGB Generalized Minimum Distance Test 5 51
0 RGB Permutations Test 2 1
0 RGB Permutations Test 3 1
0 RGB Permutations Test 4 2

Total 489
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Table A.10. 2-Thread Static Scheduling Tests Run-time - Thread 1
Thread ID Statistical Test ntuple Run-time (Seconds)

1 RGB Permutations Test 5 5
1 RGB Lagged Sum Test 0 1
1 RGB Lagged Sum Test 1 2
1 RGB Lagged Sum Test 2 3
1 RGB Lagged Sum Test 3 4
1 RGB Lagged Sum Test 4 5
1 RGB Lagged Sum Test 5 5
1 RGB Lagged Sum Test 6 7
1 RGB Lagged Sum Test 7 7
1 RGB Lagged Sum Test 8 8
1 RGB Lagged Sum Test 9 8
1 RGB Lagged Sum Test 10 9
1 RGB Lagged Sum Test 11 11
1 RGB Lagged Sum Test 12 11
1 RGB Lagged Sum Test 13 11
1 RGB Lagged Sum Test 14 12
1 RGB Lagged Sum Test 15 14
1 RGB Lagged Sum Test 16 14
1 RGB Lagged Sum Test 17 15
1 RGB Lagged Sum Test 18 16
1 RGB Lagged Sum Test 19 17
1 RGB Lagged Sum Test 20 17
1 RGB Lagged Sum Test 21 18
1 RGB Lagged Sum Test 22 19
1 RGB Lagged Sum Test 23 19
1 RGB Lagged Sum Test 24 20
1 RGB Lagged Sum Test 25 21
1 RGB Lagged Sum Test 26 22
1 RGB Lagged Sum Test 27 23
1 RGB Lagged Sum Test 28 23
1 RGB Lagged Sum Test 29 24
1 RGB Lagged Sum Test 30 25
1 RGB Lagged Sum Test 31 25
1 RGB Lagged Sum Test 32 26
1 RGB Kolmogorov-Smirnov Test 0 1
1 DAB Byte Distribution 0 2
1 DAB DCT 256 1
1 DAB Fill Tree Test 32 2
1 DAB Fill Tree 2 Test 0 4
1 DAB Monobit 2 Test 12 3

Total 480
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Table A.11. 3-Thread Static Scheduling Tests Run-time - Thread 0

Thread ID Statistical Test ntuple Run-time (Seconds)

0 Diehard Birthday Test 0 2
0 Diehard OPERM5 Test 0 4
0 Diehard 32x32 Binary Rank Test 0 16
0 Diehard 6x8 Binary Rank Test 0 2
0 Diehard Bitstream Test 0 2
0 Diehard OPSO Test 0 3
0 Diehard OQSO Test 0 3
0 Diehard DNA Test 0 31
0 Diehard Count the 1’s (stream) Test 0 1
0 Diehard Count the 1’s (byte) Test 0 1
0 Diehard Parking Lot Test 0 2
0 Diehard Minimum Distance (2d Circle) Test 2 1
0 Diehard 3d Sphere (Minimum Distance) Test 3 4
0 Diehard Squeeze Test 0 3
0 Diehard Sums Test 0 1
0 Diehard Runs Test 0 1
0 Diehard Craps Test 0 5
0 Marsaglia and Tsang GCD Test 0 171
0 STS Monobit Test 1 1
0 STS Runs Test 2 20
0 STS Serial Test 1 12
0 RGB Bit Distribution Test 1 2
0 RGB Bit Distribution Test 2 2
0 RGB Bit Distribution Test 3 2
0 RGB Bit Distribution Test 4 2
0 RGB Bit Distribution Test 5 6
0 RGB Bit Distribution Test 6 8

Total 308
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Table A.12. 3-Thread Static Scheduling Tests Run-time - Thread 1

Thread ID Statistical Test ntuple Run-time (Seconds)

1 RGB Bit Distribution Test 7 10
1 RGB Bit Distribution Test 8 14
1 RGB Bit Distribution Test 9 14
1 RGB Bit Distribution Test 10 21
1 RGB Bit Distribution Test 11 38
1 RGB Bit Distribution Test 12 59
1 RGB Generalized Minimum Distance Test 2 8
1 RGB Generalized Minimum Distance Test 3 15
1 RGB Generalized Minimum Distance Test 4 35
1 RGB Generalized Minimum Distance Test 5 87
1 RGB Permutations Test 2 1
1 RGB Permutations Test 3 1
1 RGB Permutations Test 4 2
1 RGB Permutations Test 5 6
1 RGB Lagged Sum Test 0 1
1 RGB Lagged Sum Test 1 1
1 RGB Lagged Sum Test 2 4
1 RGB Lagged Sum Test 3 4
1 RGB Lagged Sum Test 4 5
1 RGB Lagged Sum Test 5 5
1 RGB Lagged Sum Test 6 7
1 RGB Lagged Sum Test 7 7
1 RGB Lagged Sum Test 8 7
1 RGB Lagged Sum Test 9 9
1 RGB Lagged Sum Test 10 9
1 RGB Lagged Sum Test 11 11
1 RGB Lagged Sum Test 12 11

Total 392
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Table A.13. 3-Thread Static Scheduling Tests Run-time - Thread 2

Thread ID Statistical Test ntuple Run-time (Seconds)

2 RGB Lagged Sum Test 13 16
2 RGB Lagged Sum Test 14 16
2 RGB Lagged Sum Test 15 16
2 RGB Lagged Sum Test 16 17
2 RGB Lagged Sum Test 17 16
2 RGB Lagged Sum Test 18 19
2 RGB Lagged Sum Test 19 19
2 RGB Lagged Sum Test 20 19
2 RGB Lagged Sum Test 21 21
2 RGB Lagged Sum Test 22 19
2 RGB Lagged Sum Test 23 23
2 RGB Lagged Sum Test 24 25
2 RGB Lagged Sum Test 25 28
2 RGB Lagged Sum Test 26 29
2 RGB Lagged Sum Test 27 26
2 RGB Lagged Sum Test 28 23
2 RGB Lagged Sum Test 29 24
2 RGB Lagged Sum Test 30 25
2 RGB Lagged Sum Test 31 25
2 RGB Lagged Sum Test 32 27
2 RGB Kolmogorov-Smirnov Test 0 1
2 DAB Byte Distribution 0 1
2 DAB DCT 256 1
2 DAB Fill Tree Test 32 3
2 DAB Fill Tree 2 Test 0 4
2 DAB Monobit 2 Test 12 3

Total 446
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A.6 Static and Dynamic Scheduling Run-time
This section contains the raw experimental data that was collected for 4-thread static and
dynamic scheduling.

Table A.14. 4-Thread Static Scheduling Tests Run-time - Thread 0

Thread ID Statistical Test ntuple Run-time (Seconds)

0 Diehard Birthday Test 0 1
0 Diehard OPERM5 Test 0 4
0 Diehard 32x32 Binary Rank Test 0 14
0 Diehard 6x8 Binary Rank Test 0 2
0 Diehard Bitstream Test 0 1
0 Diehard OPSO Test 0 3
0 Diehard OQSO Test 0 2
0 Diehard DNA Test 0 29
0 Diehard Count the 1’s (stream) Test 0 1
0 Diehard Count the 1’s (byte) Test 0 2
0 Diehard Parking Lot Test 0 2
0 Diehard Minimum Distance (2d Circle) Test 2 1
0 Diehard 3d Sphere (Minimum Distance) Test 3 4
0 Diehard Squeeze Test 0 2
0 Diehard Sums Test 0 1
0 Diehard Runs Test 0 1
0 Diehard Craps Test 0 4
0 Marsaglia and Tsang GCD Test 0 161
0 STS Monobit Test 1 1
0 STS Runs Test 2 10

Total 287
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Table A.15. 4-Thread Static Scheduling Tests Run-time - Thread 1

Thread ID Statistical Test ntuple Run-time (Seconds)

1 STS Serial Test 1 11
1 RGB Bit Distribution Test 1 2
1 RGB Bit Distribution Test 2 2
1 RGB Bit Distribution Test 3 2
1 RGB Bit Distribution Test 4 3
1 RGB Bit Distribution Test 5 3
1 RGB Bit Distribution Test 6 5
1 RGB Bit Distribution Test 7 7
1 RGB Bit Distribution Test 8 10
1 RGB Bit Distribution Test 9 14
1 RGB Bit Distribution Test 10 18
1 RGB Bit Distribution Test 11 26
1 RGB Bit Distribution Test 12 46
1 RGB Generalized Minimum Distance Test 2 6
1 RGB Generalized Minimum Distance Test 3 9
1 RGB Generalized Minimum Distance Test 4 24
1 RGB Generalized Minimum Distance Test 5 51
1 RGB Permutations Test 2 1
1 RGB Permutations Test 3 1
1 RGB Permutations Test 4 2

Total 348
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Table A.16. 4-Thread Static Scheduling Tests Run-time - Thread 2

Thread ID Statistical Test ntuple Run-time (Seconds)

2 RGB Permutations Test 5 5
2 RGB Lagged Sum Test 0 1
2 RGB Lagged Sum Test 1 2
2 RGB Lagged Sum Test 2 3
2 RGB Lagged Sum Test 3 4
2 RGB Lagged Sum Test 4 5
2 RGB Lagged Sum Test 5 5
2 RGB Lagged Sum Test 6 7
2 RGB Lagged Sum Test 7 7
2 RGB Lagged Sum Test 8 8
2 RGB Lagged Sum Test 9 8
2 RGB Lagged Sum Test 10 9
2 RGB Lagged Sum Test 11 11
2 RGB Lagged Sum Test 12 11
2 RGB Lagged Sum Test 13 11
2 RGB Lagged Sum Test 14 12
2 RGB Lagged Sum Test 15 14
2 RGB Lagged Sum Test 16 14
2 RGB Lagged Sum Test 17 15
2 RGB Lagged Sum Test 18 16

Total 242
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Table A.17. 4-Thread Static Scheduling Tests Run-time - Thread 3

Thread ID Statistical Test ntuple Run-time (Seconds)

3 RGB Lagged Sum Test 19 17
3 RGB Lagged Sum Test 20 17
3 RGB Lagged Sum Test 21 18
3 RGB Lagged Sum Test 22 19
3 RGB Lagged Sum Test 23 19
3 RGB Lagged Sum Test 24 20
3 RGB Lagged Sum Test 25 21
3 RGB Lagged Sum Test 26 22
3 RGB Lagged Sum Test 27 23
3 RGB Lagged Sum Test 28 23
3 RGB Lagged Sum Test 29 24
3 RGB Lagged Sum Test 30 25
3 RGB Lagged Sum Test 31 25
3 RGB Lagged Sum Test 32 26
3 RGB Kolmogorov-Smirnov Test 0 1
3 DAB Byte Distribution 0 2
3 DAB DCT 256 1
3 DAB Fill Tree Test 32 2
3 DAB Fill Tree 2 Test 0 4
3 DAB Monobit 2 Test 12 3

Total 392
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Table A.18. 4-Thread Dynamic Scheduling Tests Run-time - Thread 0

Thread ID Statistical Test ntuple Run-time (Seconds)

0 Diehard Birthday Test 0 4
0 Diehard OPSO Test 0 3
0 Diehard DNA Test 0 26
0 RGB Bit Distribution Test 1 13
0 RGB Bit Distribution Test 5 18
0 RGB Bit Distribution Test 8 22
0 RGB Bit Distribution Test 11 46
0 RGB Generalized Minimum Distance Test 4 47
0 RGB Lagged Sum Test 0 1
0 RGB Lagged Sum Test 1 2
0 RGB Lagged Sum Test 3 6
0 RGB Lagged Sum Test 5 8
0 RGB Lagged Sum Test 8 11
0 RGB Lagged Sum Test 11 15
0 RGB Lagged Sum Test 14 17
0 RGB Lagged Sum Test 18 23
0 RGB Lagged Sum Test 22 29
0 RGB Lagged Sum Test 26 32
0 RGB Lagged Sum Test 30 36
0 DAB Fill Tree 2 Test 0 5

Total 364
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Table A.19. 4-Thread Dynamic Scheduling Tests Run-time - Thread 1

Thread ID Statistical Test ntuple Run-time (Seconds)

1 Diehard 32x32 Binary Rank Test 0 18
1 STS Monobit Test 1 1
1 STS Runs Test 2 14
1 RGB Bit Distribution Test 2 10
1 RGB Bit Distribution Test 4 13
1 RGB Bit Distribution Test 6 18
1 RGB Bit Distribution Test 9 23
1 RGB Bit Distribution Test 12 72
1 RGB Permutations Test 2 1
1 RGB Permutations Test 3 1
1 RGB Permutations Test 4 3
1 RGB Permutations Test 5 7
1 RGB Lagged Sum Test 2 5
1 RGB Lagged Sum Test 4 7
1 RGB Lagged Sum Test 6 10
1 RGB Lagged Sum Test 9 13
1 RGB Lagged Sum Test 12 16
1 RGB Lagged Sum Test 15 21
1 RGB Lagged Sum Test 19 24
1 RGB Lagged Sum Test 23 28
1 RGB Lagged Sum Test 27 34
1 RGB Lagged Sum Test 31 34

Total 373
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Table A.20. 4-Thread Dynamic Scheduling Tests Run-time - Thread 2

Thread ID Statistical Test ntuple Run-time (Seconds)

2 Diehard OPERM5 Test 0 8
2 Diehard Count the 1’s (stream) Test 0 1
2 Diehard Count the 1’s (byte) Test 0 2
2 Diehard Minimum Distance (2d Circle) Test 2 1
2 Diehard Squeeze Test 0 3
2 Diehard Sums Test 0 1
2 Diehard Runs Test 0 1
2 Diehard Craps Test 0 5
2 STS Serial Test 1 19
2 RGB Bit Distribution Test 3 18
2 RGB Bit Distribution Test 7 21
2 RGB Bit Distribution Test 10 31
2 RGB Generalized Minimum Distance Test 2 9
2 RGB Generalized Minimum Distance Test 3 17
2 RGB Generalized Minimum Distance Test 5 101
2 RGB Lagged Sum Test 17 22
2 RGB Lagged Sum Test 21 28
2 RGB Lagged Sum Test 25 31
2 RGB Lagged Sum Test 29 35
2 RGB Kolmogorov-Smirnov Test 0 2
2 DAB Byte Distribution 0 2
2 DAB DCT 256 2
2 DAB Fill Tree Test 32 4
2 DAB Monobit 2 Test 12 4

Total 368
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Table A.21. 4-Thread Dynamic Scheduling Tests Run-time - Thread 3

Thread ID Statistical Test ntuple Run-time (Seconds)

3 Diehard 6x8 Binary Rank Test 0 4
3 Diehard Bitstream Test 0 1
3 Diehard OQSO Test 0 4
3 Diehard Parking Lot Test 0 2
3 Diehard 3d Sphere (Minimum Distance) Test 3 4
3 Marsaglia and Tsang GCD Test 0 179
3 RGB Lagged Sum Test 7 10
3 RGB Lagged Sum Test 10 14
3 RGB Lagged Sum Test 13 17
3 RGB Lagged Sum Test 16 23
3 RGB Lagged Sum Test 20 25
3 RGB Lagged Sum Test 24 29
3 RGB Lagged Sum Test 28 34
3 RGB Lagged Sum Test 32 33

Total 379
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